Metal Oxide Gas Sensor Drift Compensation Using a Two-Dimensional Classifier Ensemble

نویسندگان

  • Hang Liu
  • Renzhi Chu
  • Zhenan Tang
چکیده

Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal Oxide Gas Sensor Drift Compensation Using a Dynamic Classifier Ensemble Based on Fitting

Sensor drift is currently the most challenging problem in gas sensing. We propose a novel ensemble method with dynamic weights based on fitting (DWF) to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. The DWF method uses a dynamic weighted combination of support vector machine (SVM) classifiers trained by the datasets ...

متن کامل

Chemical gas sensor array dataset

To address drift in chemical sensing, an extensive dataset was collected over a period of three years. An array of 16 metal-oxide gas sensors was exposed to six different volatile organic compounds at different concentration levels under tightly-controlled operating conditions. Moreover, the generated dataset is suitable to tackle a variety of challenges in chemical sensing such as sensor drift...

متن کامل

Multi-frequency Temperature Modulation for Metal-oxide Gas Sensors

This article presents an empirical study of temperature modulation for metal-oxide gas sensors at multiple frequencies ranging from 0.125Hz to 4Hz. Commercial metal-oxide sensors from two manufacturers were exposed to analyte concentrations below their isothermal discrimination threshold over a period of ten days. The results reported in this article indicate that temperature modulation can sig...

متن کامل

Concentration estimation of formaldehyde using metal oxide semiconductor gas sensor array-based e-noses

Purpose – The purpose of this paper is to present a novel concentration estimation model for improving the accuracy and robustness of low-cost electronic noses (e-noses) with metal oxide semiconductor sensors in indoor air contaminant monitoring and overcome the potential sensor drift. Design/methodology/approach – In the quantification model, a piecewise linearly weighted artificial neural net...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015